# The World Wide Molecular Matrix

#### Nick Day

Unilever Centre for Molecular Informatics, University of Cambridge





#### The Internet Information Explosion

Symbolised by e.g. Google<sup>TM,</sup> eBay<sup>TM</sup> and Wikipedia.

With the WWMM we are hoping to provide a chemical equivalent.

Skills for performing Web searches and locating information are common knowledge.





#### Bioinformatics – the forerunners

Authors are encouraged to make *factual* information from publications available in databases.

- Protein sequences deposited with NCBI,
- structures with PDB,
- disease alleles with (O)MIM etc...

Thus, this information is available to *anyone* connected to the Web.





### Cheminformatics – lagging...

Chemists can also 'Google' for facts and explanations:

- some high-quality curated info is available
  - webElements,
  - molBase,
  - PubChem.
- often data is not well curated or openly visible,
- thus, hard to make informed judgements.





### **Chemical Publication**

Chemistry micropublished by humans then re-aggregated by humans.



The resulting chemical data is closed and generally in formats that are not reusable.





### Example of data loss during publication







•Wavefunction is a GIF. All previously calculated data is not present.





#### Why create the WWMM?

- To provide a method for chemists to archive and share their data Openly by:
  - using community agreed markup and metadata, and providing tools to convert to them from 'legacy' files (e.g. mol, pdb, sdf etc).
  - storing the data in permanent, maintainable, easily searchable repositories.





### What is the WWMM?

• The overall design is of *autonomous* sites that expose data and <u>metadata</u> openly.

• Statement of openness through Creative Commons licensing.

• The key concepts we will encode will represent Beilstein's vision of chemistry:

- Molecules ?
- Properties
- Provenance







### **Encoding molecules**

We need a way of representing a chemical structure that:

- is unique a primary key,
- today's search methods require the identifier be a text string,
- allows high-performance in database retrieval
  - high recall,
  - low false positives,
  - low false negatives.





### Semantically free identifiers

Registry numbers e.g. CAS, RTECs or PubChem identifiers:

- are unique (e.g 58-08-2 is caffeine) but,
- contain no information on the molecule they represent
- require a lookup
- lots of false positives when Web searched.





### **Canonical identifiers**

- SMILES notation.
- Converts structure to unique string by algorithm.
- Can hold structural info on connections, stereochemistry, isotopic enrichment.
- •...but is proprietary and there is more than one implementation in use.
- Different unique SMILES strings on the Web!





#### SMILES for caffeine

[c]1([n+]([CH3])[c]([c]2([c]([n+]1[CH3])[n][cH][n+]2[CH3]))[O-])[O-])
 CN1C(=O)N(C)C(=O)C(N(C)C=N2)=C12
 Cn1cnc2n(C)c(=O)n(C)c(=O)c12
 Cn1cnc2c1c(=O)n(C)c(=O)n2C
 N1(C)C(=O)N(C)C2=C(C1=O)N(C)C=N2
 O=C1C2=C(N=CN2C)N(C(=O)N1C)C

7. CN1C=NC2=C1C(=O)N(C)C(=O)N2C

<u>Caffeine</u>



InChI=1/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3





### InChI: IUPAC International Chemical Identifier

A non-proprietary unique identifier for the representation of chemical structures. A normalised, canonicalised and serialised form of a chemical connection table.



InChI FAQ: http://wwmm.ch.cam.ac.uk/inchifaq/





### **Googling for InChIs**

Searched for the entire Southampton Crystal Structure Report Archive – 104 structures (18-11-2004).







#### InChl Search Results

#### Table 3 InChI retrieval for a set of 104 crystal structures on 18 November, 2004

| 64                                          | Google™    | Altavista™ | Yahoo™   | MSN™     |
|---------------------------------------------|------------|------------|----------|----------|
| Total XHTML files containing $InChIs = 104$ |            |            |          |          |
| XHTML recall <sup>a</sup>                   | 104 (100%) | 39 (38%)   | 33 (32%) | 43 (42%) |
| Non-InChI false-positives <sup>b</sup>      | 0          | 0          | 0        | 0        |
| Inter-InChI precision <sup>c</sup>          | 103        | 38         | 32       | 42       |
| Total CML files containing $InChIs = 93$    |            |            |          |          |
| CML recall <sup>d</sup>                     | 92         | 0          | 0        | 0        |

<sup>*a*</sup> Number (and percentage) of XHTML documents containing InChIs retrieved. <sup>*b*</sup> Number (and percentage) of non-InChIs (*e.g.*, football scores) retrieved. <sup>*c*</sup> Number of XHTML documents containing correct InChIs retrieved. <sup>*d*</sup> Number of CML documents containing correct InChIs retrieved.

# 832 searches performed in total on 8 different search engines with no false positives returned.

Org. Biomol. Chem., 2005, 3, 1832-1834





#### How do we encode properties?

The key concepts we will encode will represent Beilstein's vision of chemistry:

- Molecules encoded as InChI
- Properties ?
- Source (provenance)





### Chemical Markup Language

- An XML-based language that provides a surface syntax and document structure.
- Can hold all information from legacy files.
- Easily reusable strict structure means easy to write tools for further conversion or calculation  $\rightarrow$  a good 'glue-ware'.





#### Quick CML

```
<molecule id="no2">
<atomArray>
<atom id="n1" elementType="N" hydrogenCount="0"/>
<atom id="o1" elementType="O" hydrogenCount="0"/>
<atom id="o2" elementType="O" hydrogenCount="0"/>
</atomArray>
</bondArray>
<bond id="bo1" atomRefs2="n1 o1" order="2"/>
<bond id="bo1" atomRefs2="n1 o2" order="1"/>
</bondArray>
</molecule>
```





#### How do we encode provenance?

The key concepts we will encode will represent Beilstein's vision of chemistry:

- Molecules encoded as InChI
- Properties encoded as CML
- Source (provenance) ?





#### Provenance of data

 Provided by RDF (Resource Description Framework) metadata:

- Dublin Core document level metadata
- FOAF (Friend-of-a-friend) personal detail metadata

• DOAP (Description-of-a-project) – used to describe Open Source projects.





### WWMM Architecture



UNIVERSITY OF CAMBRIDGE



### Aggregation to archival



UNIVERSITY OF

AMBRIDGE

- Creation of our data and metadata for archival.
- Stream based on small modular components.
- Use a low cost, high-throughput workflow system to link the components and manage data flow between.
- Aim to be fully automated.



#### Taverna

• An Open Source, Java-based workflow management system from the myGrid project.

• Workflow processors can be created from libraries through the use of the 'API Consumer'.

• We have incorporated JUMBO, the Open modular toolkit into the system.

 Once created, processors can be 'clicked' together to create complex technologies from simple building blocks...







### Aggregating Legacy Documents

Before any processing is done, we need to collect the legacy formats. Done with a workflow!



Downloaded 12,000+ CIFs from Acta E. Cryst in ~40mins.





#### Legacy→CML

- Many legacy formats can be converted to CML using OpenBabel.
- We also have tools for converting
  - CIFs (Crystallographic Interchange Format)
  - MOPAC/GAMESS input and output

to CML.





#### **CIF2CML** Example







## Adding InChl

 InChIs are created by sending the CML representation of a molecule to our InChI Web Service, which implements the IUPAC InChI generation app.

- Processing done on our Web server then returned.
- We have implemented this WS in a Taverna workfow.



#### Web Services

A set of protocols that allows applications on remote terminals to communicate through a standard XML-based langauge.

Provides:

- interoperability apps in different languages on different platforms can interact.
- ease of reuse no need for any software downloading or installation.







### CML/InChI 2 CMLRSS

- CMLRSS is an extension of RSS 1.0 which holds CML data.
- CMLRSS creation implemented as a Web Service in Taverna.





#### **Automatic Dissemination**



- The CMLRSS for each stream is deposited in separate RSS 'newsfeeds' on our server.
- Users can subscribe to these to get the latest chemistry from different sources.





#### Archiving the data



• The CMLRSS is to be directly ingested in an Institutional Repository.

• The data will then be indexed by InChI in a separate repository.

• Provides search engines with a simpler indexing method.





#### **Institutional Repositories**

| 🕲 DSpace at Cambrid                                                     | dge: Item 1810/34694 - Mozilla                             | a Firefox                                                       |  |  |  |
|-------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| Elle Edit View Go Bookmarks Iools Help                                  |                                                            |                                                                 |  |  |  |
| 🖕 • 🛶 - 🥰 🛞 🏠 🖿 http://www.dspace.cam.ac.uk/handle/1810/34694?mode=full |                                                            |                                                                 |  |  |  |
| 🗭 Getting Started 🔯 Latest Headlines                                    |                                                            |                                                                 |  |  |  |
| DS p a                                                                  | a c e<br>ridge                                             | and the second                                                  |  |  |  |
|                                                                         | DSpace at Cambridge >                                      |                                                                 |  |  |  |
| Browse                                                                  | Chemistry ><br>Unilever Centre for Molecular Informatics > |                                                                 |  |  |  |
| <ul> <li>Communities</li> <li>&amp; Collections</li> </ul>              | WWMM >                                                     |                                                                 |  |  |  |
| <ul> <li>Titles</li> </ul>                                              |                                                            | Full metadata record                                            |  |  |  |
| Authors                                                                 |                                                            |                                                                 |  |  |  |
| O By Date                                                               | DC Field                                                   | Value                                                           |  |  |  |
|                                                                         | creator                                                    |                                                                 |  |  |  |
| Sign on to:                                                             | date.accessioned                                           | 2005-08-11114:21:482                                            |  |  |  |
| Receive email<br>updates                                                | date.available                                             | 2005-08-11T14:21:48Z                                            |  |  |  |
| My DSpace                                                               | date.created                                               | 2003-02-01                                                      |  |  |  |
| authorized users                                                        | date.issued                                                | 2005-08-11T14:21:48Z                                            |  |  |  |
| Unit Prome                                                              | identifier                                                 | NSC31002                                                        |  |  |  |
| 🕘 Help                                                                  | format.extent                                              | 6048 bytes                                                      |  |  |  |
| About DSpace                                                            | format.extent                                              | 5581 bytes                                                      |  |  |  |
| @ Cambridge                                                             | format.mimetype                                            | chemical/x-cml                                                  |  |  |  |
| Search DSpace:                                                          | format.mimetype                                            | chemical/x-cml                                                  |  |  |  |
| Go                                                                      | language.iso                                               | en_GB                                                           |  |  |  |
| Advanced Search                                                         | publisher                                                  | Unilever Center for Molecular Informatics, Cambridge University |  |  |  |
|                                                                         | title                                                      | NSC31002                                                        |  |  |  |
| SHERPA                                                                  | type                                                       | Other                                                           |  |  |  |
|                                                                         | identifier.ichi                                            | C22H18,1H3-13-7H-8H-15-10H-18-17-6H-4H-3H-5H-16(17)14(2         |  |  |  |
|                                                                         | Appears in Collections:                                    | WWMM                                                            |  |  |  |
| <                                                                       |                                                            |                                                                 |  |  |  |
| Done                                                                    |                                                            |                                                                 |  |  |  |

- Provides permanence and maintenance of data.
- Cambridge has a 'DSpace' repository.

•Already deposited 250,000 molecules and calculated properties from NCI database.





### Searching the WWMM



- Search engine queries our only method of searching...for now.
- In the future we may rely on OAI-PMH for searching.

•





### The WWMM Portal

- Provides a GUI interface to our Web Services.
- A method to trivially run Web Services with point-and-click.

•Based on Gridsphere technology.







#### The Google/InChI Web Service

A Web Service based at our Portal which allows users to search the Web by drawing a 2D structure.







#### Searching...

#### The World Wide Molecular Matrix CPGS Seminar 08-11-05







#### Results

#### The World Wide Molecular Matrix CPGS Seminar 08-11-05







### Conclusion

We therefore provide an infrastructure of distributable components where robots can:

- read journals,
- extract molecules,
- compute their properties and,
- publish them to newsfeeds and Open repositories.





### Thanks

- Peter MR, Yong Zhang and Joe Townsend.
- The InChI team Steve Heller, Steve Stein, Dmitrii Tchekovskoi and Alan McNaught.
- The Taverna team Tom Oinn et al.
- EPSRC is thanked for funding.





## Links

- Group HomePage http://wwmm.ch.cam.ac.uk
- WWMM Portal http://wwmm.ch.cam.ac.uk/gridsphere/gridsphere
- DSpace http://www.dspace.cam.ac.uk
- InChI FAQ http://wwmm.ch.cam.ac.uk/inchifaq
- InChI application http://www.iupac.org/inchi/license.html



