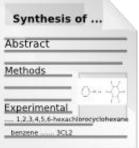
ChemicalTagger

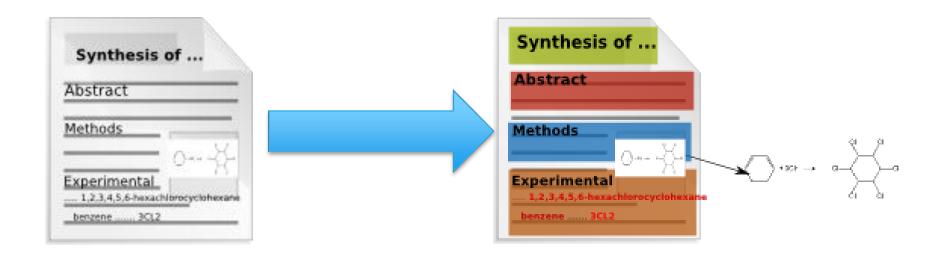
Lezan Hawizy, David Jessop, Daniel Lowe and Peter Murray-Rust

Outline

- * Aim
- * ChemicalTagger Components
- * Evaluation
- * Applications
- * Demo


Current State of Chemical Information

- * Large amounts of data produced annually
- * Theses, journals, patents and reports
- Unstructured freeflowing text



Aim: Enhance Data

ChemicalTagger

- Open Source tool for text-mining chemistry
- * OSCAR + NLP tools
- Extendible and adaptable tagging and parsing components
- Converts free flowing text to structured text

Synthesis of Poly-.... (4a) :

Synthesis of	(3) and
Poly (3) :	ed to a
	ixed for
Compound (1) and	I under
(2a) were added to a	a ified by
solution of mixed f	or (52 %)
2 hours dried unde	er
purified by	
to yield (3) (78 %)	

Marked-up Reaction:

••

Synthesis of (2-Aminooxyethyl)-4-(1-bromoethyl)benzoate (2):

Initiator 1 (30 mg, 0.068 mmol) was dissolved in **THF** (2 mL). **Hydrazine hydrate** (10 uL, 0.34 mmol) was added via syringe, and the solution was refluxed for 2.5 h. The flask was cooled to room temperature and then filtered through a 20 m syringe filter. The filtrate was condensed in vacuo and the crude product was purified by column chromatography using **dichloromethane/ethyl acetate** (5/1) as the mobile phase to yield 42 mg (80%) of **2** as a white solid.

Legend: Dissolve-Phrase Add-Phrase Degass-Phrase Cool-Phrase Filter-Phrase Condense-Phrase Purify-Phrase Yield-Phrase

ChemicalTagger Components

- * Tokenisers:
 - * Split sequence into individual tokens
- * Taggers:
 - * Assign parts-of-speech to each token
- * Parser:
 - * Groups tagged tokens into phrases
- * Role Identifier:
 - * Assigns roles to the parsed phrases

Tokenisers

- * Split a phrase into individual tokens:
- SCAR-Tokeniser and WhiteSpaceTokeniser

DMAP (2.48 g, 11.8 mmol) was dissolved in THF (50 mL)

DMAP 2.48 g , 11.8 mmol was dissolved in THF 50 mL ChemicalTagger

Taggers

- Assign parts of speech to a token
- * Three step process:
 - * OSCAR: Chemical Entities
 - Regex: Chemistryrelated entities
 - * OpenNLP: English entities

DMAP (2.48 g, 11.8 mmol) was dissolved in THF (50 mL)

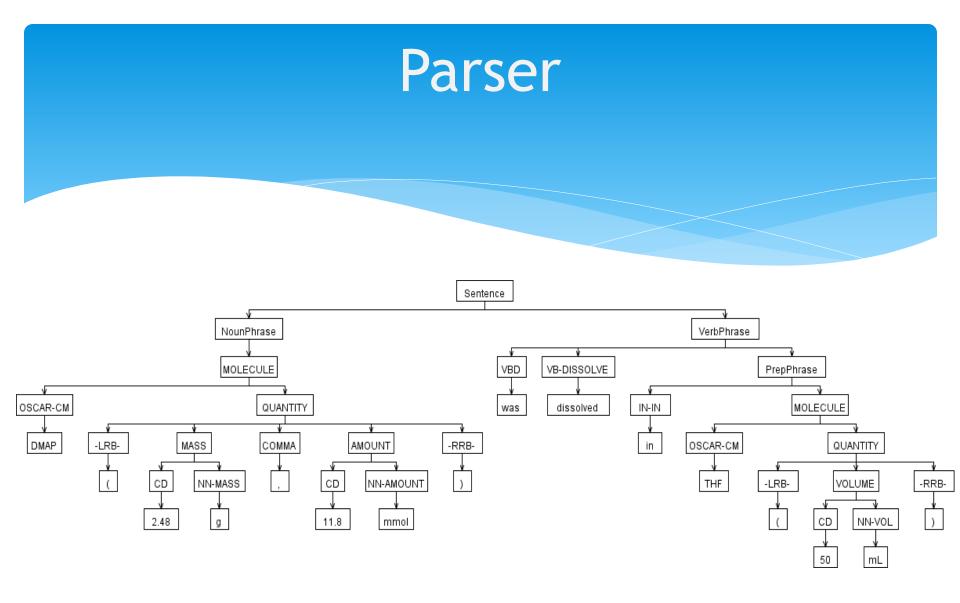
Taggers: OSCAR

DMAP (2.48 g , 11.8 mmol) was dissolved in THF (50 mL)

Taggers: Regex

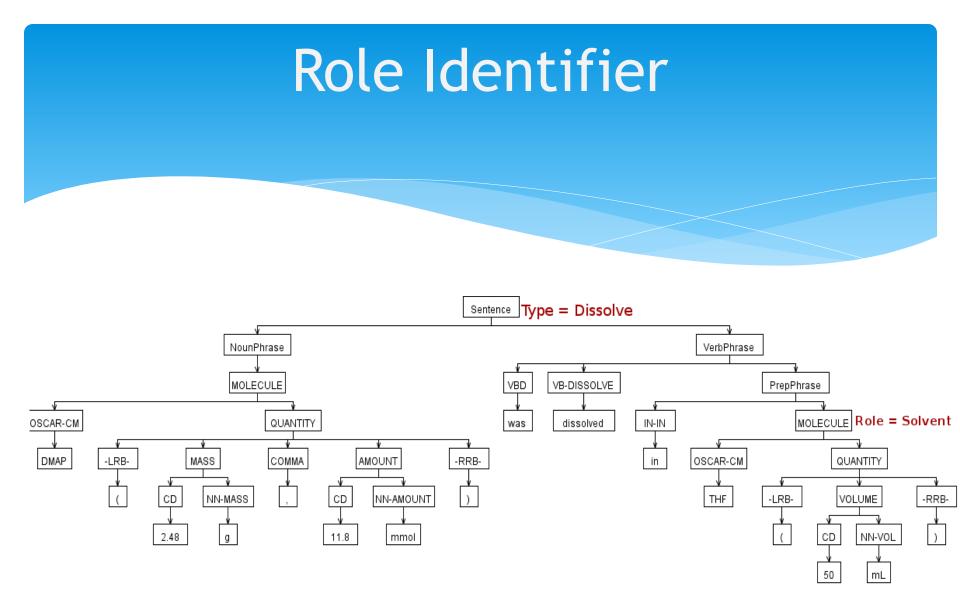
DMAP (2.48 g , 11.8 mmol) was dissolved in THF (50 mL)

Taggers: OpenNLP


DMAP (2.48 g , 11.8 mmol) was dissolved in THF (50 mL)

Parser

* Converts tagged text into formal representations.


* Rule-Based Grammar

- * Sentence : Noun-Phrase Verb-Phrase
- * Noun-Phrase : dt? adj? NOUN+
- * Verb-Phrase : verb+ Prep-Phrase
- * Prep-Phrase : prep Noun-Phrase
- * NOUN
- : MOLECULE, nn, nns ...
- * MOLECULE : oscar-cm and AMOUNT
- * AMOUNT : numbers, units (e.g. ml, grams, mols) between brackets

Role Identifier

- * Post-process parse trees
- * Adds 'Action Roles' to phrases:
 - * 21 types of 'Action Roles'
 - * E.g.: adding, dissolving, purifying, yielding etc...
- * Adds 'roles' to molecules (e.g: solvents):
 - * Dissolve-Phrase:
 - * DMAP (2.48 g, 11.8 mmol) was dissolved in THF (50 mL)
 - * Wash-Phrase:
 - * The organic extracts were washed with brine

ChemicalTagger: Input

Methyl(2S,3S,αS)-2-hydroxy-3-[N-benzyl-N-(α-methylbenzyl)amino]-4-tri-isopropylsilyloxy-butanoate 33

BuLi (2.5 M in hexanes, 8.14 mL, 11.4 mmol) was added dropwise via syringe to a stirred solution of (S)-N-benzyl-N-(α -methylbenzyl)amine (2.48 g , 11.8 mmol) in THF (50 mL) at -78 °C. After stirring for 30 min a solution of 28 (2.0 g, 7.35 mmol) in THF (20 mL) at -78 °C was added dropwise via cannula . After stirring for a further 2 h at -78 °C the reaction mixture was guenched with (+)-CSO (3.37 g, 14.7 mmol) and allowed to warm to rt over 12 h. Sat ag NH4Cl (5 mL) was added and the mixture was stirred for 5 min before being concentrated in vacuo. The residue was partitioned between DCM (50 mL) and 10 % ag citric acid (10 mL). The organic layer was separated and the aqueous layer was extracted with DCM (2×50 mL). The combined organic extracts were washed sequentially with sat aq NaHCO3 (50 mL) and brine (50 mL), dried and concentrated in vacuo. The residue was dissolved in Et2O (50 mL), the insoluble CSO residues were filtered off, and the filter cake was washed with Et2O (2 x 20 mL). The filtrate was concentrated in vacuo and the process was repeated. Purification via flash column chromatography (eluent 30-40 °C petrol- Et2O , 20 : 1) gave 33 as a colourless oil (2.75 g , 75 % , > ; 98 % de) ChemicalTagger

ChemicalTagger: Output

 $Methyl(2S,3S,\alpha S)-2-hydroxy-3-[N-benzyl-N-(\alpha-methylbenzyl)amino]-4-tri-iso-propylsilyloxy-butanoate 33$

BuLi (2.5 M in hexanes, 8.14 mL, 11.4 mmol) was added dropwise via syringe to a stirred solution of (S)-N-benzyl-N-(α -methylbenzyl)amine (2.48 g, 11.8 mmol) in THF (50 mL) at -78 °C. After stirring for 30 min a solution of 28 (2.0 g, 7.35 mmol) in THF (20 mL) at -78 °C was added dropwise via cannula. After stirring for a further 2 h at -78 °C the reaction mixture was quenched with (+)-CSO (3.37 g, 14.7 mmol) and allowed to warm to rt over 12 h. Sat ag NH4Cl (5 mL) was added and the mixture was stirred for 5 min before being concentrated in vacuo. The residue was partitioned between DCM (50 mL) and 10 % ag citric acid (10 mL). The organic layer was separated and the aqueous layer was extracted with DCM (2×50 mL). The combined organic extracts were washed sequentially with sat aq NaHCO3 (50 mL) and brine (50 mL), dried and concentrated in vacuo. The residue was **dissolved** in Et2O (50 mL), the insoluble CSO residues were **filtered** off, and the filter cake was washed with Et2O (2 x 20 mL). The filtrate was concentrated in vacuo and the process was repeated. Purification via flash column chromatography (eluent 30-40 °C petrol- Et2O , 20 : 1) gave 33 as a colourless oil (2.75 g , 75 % , > ; 98 % de)

Evaluation

- * Corpus of 50 experimental paragraphs
- * Four Annotators and ChemicalTagger
- * Annotation guidelines
- * Inter-Annotator agreement as well as Machine-Annotators agreement
- * Three types of evaluation:
 - * Action name agreement
 - * Filtered Phrase agreement
 - * Phrase agreement using Sequence Alignment
- * Similarity measured by Dice Coefficient

Evaluation: Action Name Agreement (%)

Annotator	1	2	3	4	Chemical Tagger
1	-	91.4	94.0	94.3	92.1
2	91.4	-	92.2	92.5	91.5
3	94.0	92.2	-	94.0	92.0
4	94.3	92.5	94.0	-	92.2
Chemical Tagger	92.1	91.5	92.0	92.2	-
Machine- Annotator Agreement	91.9				
Inter- annotator Agreement	93.1				

Evaluation : Filtered Phrase Agreement (%)

Annotator	1	2	3	4	Chemical Tagger
1	-	75.1	70.2	75.0	61.4
2	75.1	-	77.6	80.0	60.7
3	70.2	77.6	-	79	56.5
4	75.0	80.0	79.0	-	63.0
Chemical Tagger	61.4	60.7	56.5	63.0	-
Machine- Annotator Agreement	60.0				
Inter- annotator Agreement	76.2				

Evaluation: Phrase Alignment

Annotator A

1. to a 25 ml threenecked roundbottomed flask fitted with a dea n-stark trap, a condenser, and a nitrogen inlet / outlet and ma gnetic stirrer

2. stirring the reaction mixture over night at room temperature

3. evaporation of the eluate

4. afforded 8 as a white solid(2.63 g 57 % yield)

Annotator B

1. a 25 ml three-necked roundbottomed flask fitted with a dean -stark trap, a condenser, and a nitrogen inlet / outlet

2. after stirring the reaction mixture overnight at room temperature

3.which then afforded 8 as a white solid (2.63 g 57 % yield)

ChemicalTagger

Evaluation: Sequence Alignment

- * Used in Bioinformatics for protein and nucleotide alignment.
- * Needleman-Wunsch algorithm
- * Comparing pairs of sequences and computing a score measurement
- * Example ABC and ABBC :
 - * AB_C
 - * ABBC

Evaluation : Phrase Alignment Agreement(%)

Annotator	1	2	3	4	Chemical Tagger
1	-	90.2	89.2	91.1	88.4
2	90.2	-	90.8	91.6	89.8
3	89.2	90.8	-	91.6	87.2
4	91.1	91.6	91.6	-	90.2
Chemical Tagger	88.4	89.8	87.2	90.2	-
Machine- Annotator Agreement	88.9				
Inter- annotator Agreement	90.8				

Applications: Reaction Repositories

Site Menu: 🔈

- <u>Home</u>

Repository Info

Patent Repository

SELECT ?reaction ?title ?subclassName WHERE {?patent <http://www.patenteye.com/#hasReaction> ?reaction . ?reaction <http://www.patenteye.com/#hasMolecule> ?molecule . ?molecule <http://www.patenteye.com/#hasCompound> ?compound . ?molecule <http://www.patenteye.com /#hasTitle> ?title . ?compound <http://www.w3.org/2000/01/rdf-schema#subClassOf> ?subclass . ?subclass <http://www.patenteye.com/#hasName> ?subclassName }

Run SPARQL

Molecular Data				
reaction	title	subclassName		
epu1620437b1-n0355	tetranydroturan	suitable solvent	^	
ep02065383a1-h0353	triphenylphosphine	phosphine		
ep01511718b1-h0228	hydrochloride	acid salt		
ep01828185b1-h0346	diisopropylethylamine	base		
ep01620437b1-h0256	propionitrile	nitrile		
ep01686999b1-h0031	n-butanol	alcohol		
ep01626970b1-h0141	Diisopropylethylamin e	base		
ep01626970b1-h0141	diisopropylethylamine	base		
ep01807423b1-h0049	N,N-diisopropylethyla mine	base		
ep01597251b1-h0016	2-propanol	low molecular weigl aliphatic alcohol		

Applications: Reaction Repositories

Patent Repository

Repository currently contains 315 Patents

Most Commonly Used Compound					
compound	title	count			
http://rdf.openmolecu les.net/?inchi=1 /c4h8o/c1-2-4-5-3-1 /h1-4h2	tetrahydrofuran	183			
http://rdf.openmolecu les.net/?inchi=1 /c8h19n /c1-6-9(7(2)3)8(4)5 /h7-8h,6h2,1-5h3	diisopropylethylamine	149			
http://rdf.openmolecu les.net/?inchi=1 /ch2o3.2k/c2-1(3)4;; /h(h2,2,3,4);;/q;2*+1 /p-2/fco3.2k/q-2;2m	potassium carbonate	136			
http://rdf.openmolecu les.net/?inchi=1 < Returned 4,924 Returned 4	methylene chloride	98 -			

Site Menu:

- <u>Home</u> Repository Info

Applications: Reaction Repositories

Site Menu:

<u>Home</u>
Repository Info

Patent Repository

Information for http://rdf.openmolecules.net/?inchi=1/c8h19n/c1-6-9(7(2)3)8(4)5/h7-8h,6h2,1-5h3:

hasInChl:InChI=1/C8H19N/c1-6-9(7(2)3)8(4)5/h7-8H,6H2,1-5H3

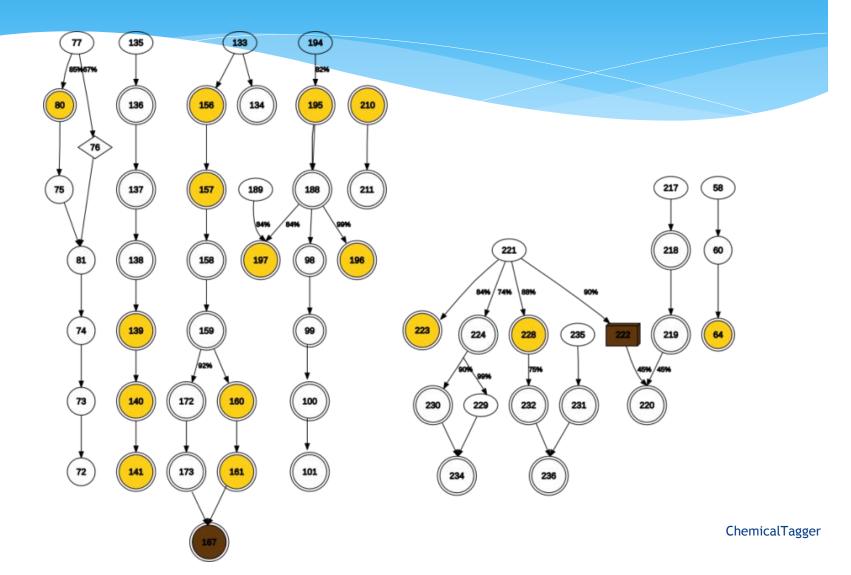
hasName:N-ethyldiisopropylamine

hasName:N,N-diisopropyl-N-ethylamine

hasName:ethyldiisopropylamine

hasName:N,N-diisopropylethylamine

hasName:diisopropylethylamine


hasTitle:diisopropylethylamine

hasTitle:N,N-diisopropylethylamine

hasTitle:ethyldiisopropylamine

hasTitle:N,N-diisopropyl-N-ethylamine

Applications: Visualisations

Acknowledgements

- * Dr. Nico Adams
- * Nicholas England
- * Dr. Colin Batchelor
- * Dr. Egon Willighagen
- * Unilever
- * JISC

Questions and Comments?

