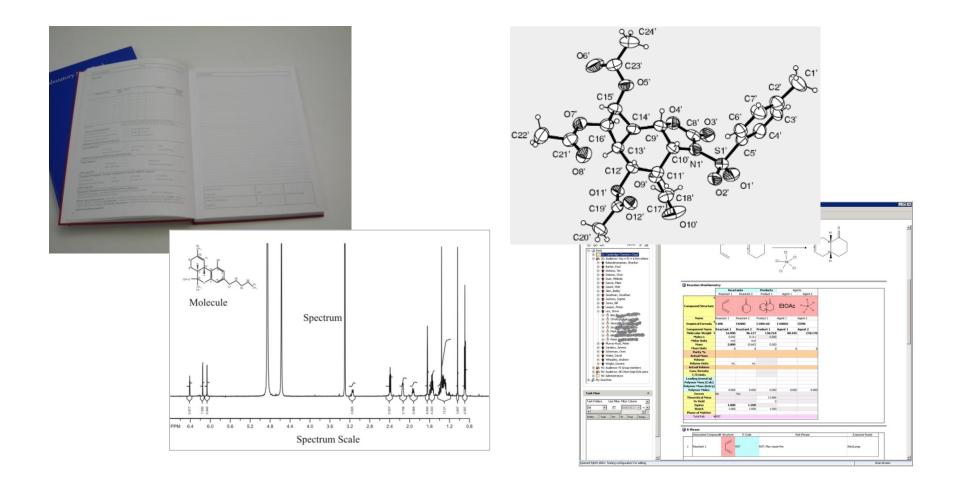
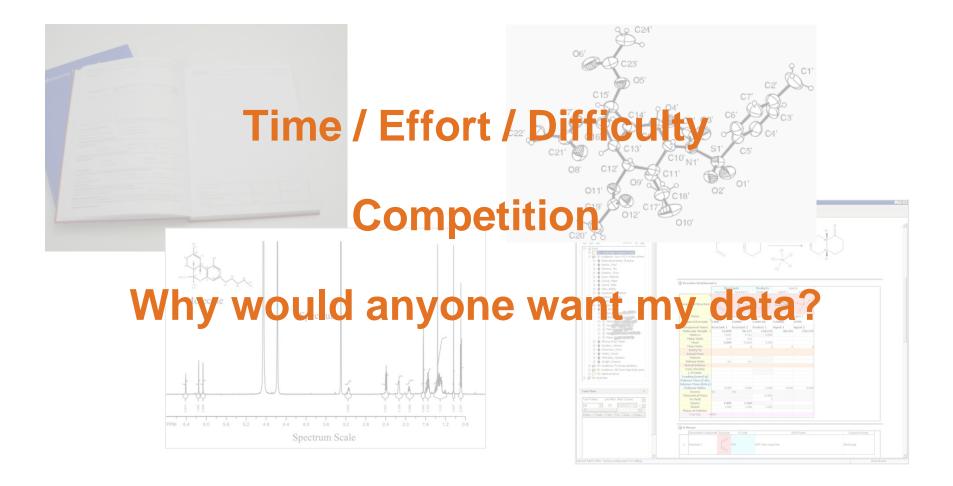
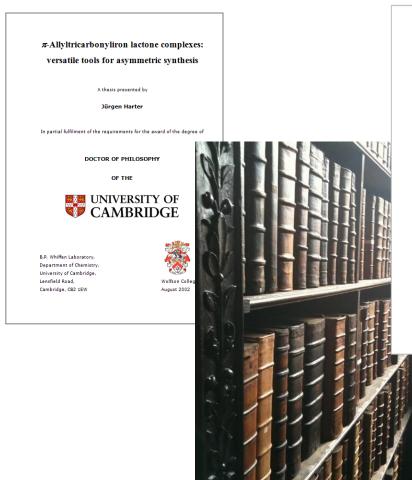
JUMBO and Lensfield: Semantics and Workflow for Computational Chemistry


Sam Adams, Joe Townsend, Peter Murray-Rust (sea36@cam.ac.uk)

COST D37 Evaluation Meeting, Thessaloniki January 2011


Most data is never published


Most data is never published

Most published data is unusable

288(100), 242(14), 251(19), 204(94).

(2R,5S,7R,1'R)-1-Aza-3-oxa-8-oxo-2-phenyl-7-[N-acetylamino-(ethoxycarbonyl)methyl]bicyclo[3.3.0]octane 12b

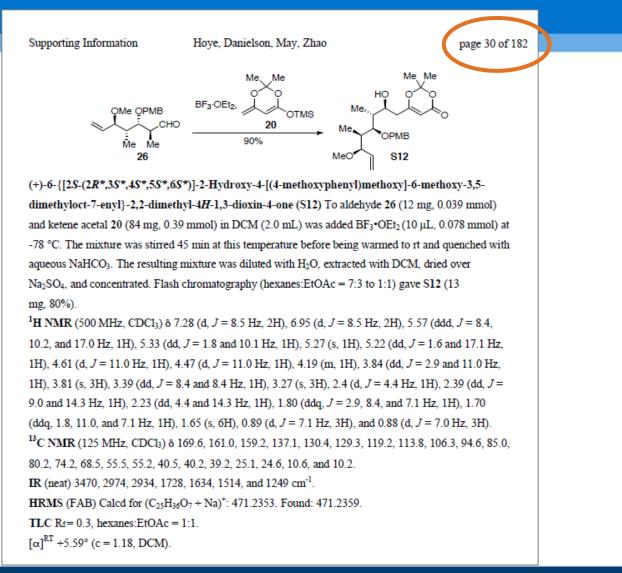
At -5 °C, acetic anhydride (0.042 g, 0.41 mmol) was added to a solution of amine 12a (0.10 g, 0.33 mmol) and triethylamine (0.067 g, 0.66 mmol) in chloroform (9 ml). The mixture was stirred at -5 °C for 10 minutes and then at 0 °C for a further 4 hours. Following washing with citric acid solution (10% in H₂O; 3×8 ml) and drying over magnesium sulfate, the solvent was evaporated. The resulting yellow oil was purified by flash column chromatography on silica (1:1 petroleum ether-ethyl acetate gradient to 1:3) to give the product, a pale vellow oil (0.071 g, 62%): R_f 0.14 (1 : 3 petroleum ether-ethyl acetate); (Found: C, 62.26; H, 6.84; N, 7.68. C18H22N2O5 requires C, 62.42; H, 6.40; N, 8.09%); [a]²⁵_D + 120 (c 0.20, CHCl₃); v_{max} (film)/ cm⁻¹ 3313, 1739, 1703, 1690; δ_H(500 MHz, CDCl₃) 1.28(3H, t, J 7.0 Hz, OCH₂CH₃), 2.01(3H, s, CH₃C(O)), 2.14-2.20(1H, m, C(6)Hendo), 2.54-2.60(1H, m, C(6)Herdo), 3.27(1H, ddd, J 10.5, 10.5, 3.5 Hz, C(7)H_{ere}), 3.66(1H, dd, J 8.0, 8.0 Hz, C(4)H_{erefe}), 4.07-4.16(1H, m, C(5)H), 4.17-4.27(3H, m, C(4)Hern and OCH₂CH₃), 4.84(1H, dd, J 8.5, 3.5 Hz, C(1')H), 6.23(1H, s, C(2)H), 7.11(1H, br d, J 8.5 Hz, NH), 7.29-7.42(5H, m, ArH); δ_c(50.3 MHz, CDCl₃) 13.98(OCH₂CH₃), 22.94(H₃CC(O)), 28.22(C(6)), 48.19 and 51.51(C(7) and C(1')), 57.07(C(5)), 61.82(OCH2CH2), 72.26(C(4)), 86.89(C(2)), 126.2, 128.7, 129.0(ArC), 138.6(4° ArC), 169.9, 170.7 and 176.9(CH₃C(O)N, C(8) and CO₂Et); m/e (probe CI, NH₃) 347(MH⁺, 100%), 303(4), 288(4), 273(7), 231(14), 211(8), 202(26).

(2R,5S,7R,1'S)-1-Aza-3-oxa-8-oxo-2-phenyl-7-[N-acetylamino-(ethoxycarbonyl)methyl]bicyclo[3.3.0]octane 13b

ad from amina 12a an a 0.067 a

acetate) to give the product 14 as a colourless oil (40 mg, 61% over 2 steps): R_i 0.12 (1 : 6 petrol-ethyl acetate); v_{max} (thin film)/ cm⁻¹ 2924(br m), 1737(s), 1700(s), 1667(s); $\delta_{H}(200 \text{ MHz}, \text{CDCl}_3)$ 1.14(3H, t, 17.0 Hz, OCH_2CH_3), 2.03(3H, s. CH₂C-(0)), 2.12–2.24(1H, m, C(6)H_{endo}), 2.38–2.51(1H, m, C(6)H_{endo}), 3.01–3.10(1H, m, C(7)H), 3.42(1H, dd, J 8.5, 8.5 Hz, C(4)H_{endo}), 3.01–3.10(1H, m, C(7)H), 3.42(1H, dd, J 8.5, 8.5 Hz, C(4)H_{endo}), 4.00–4.28(4H, m, C(5)H, C(4)H_{endo} and OCH_2CH_3), 4.90(1H, dd, J 5.0, 8.5 Hz, C(1')H), 6.28(1H, s, C(2)H), 6.81(1H, br d, J 8.5 Hz, NH), 7.37–7.39(5H, m, ArH); δ_2 (50.3 MHz, CDCl₃), 13.85(OCH₂CH₃), 23.04(H₃CC(0)), 25.48(C(6)), 47.73 and 53.08(C(7) and C(1')), 57.37(C(5)), 61.93(OCH₂CH₃), 71.49(C(4)), 86.90(C(2)), 125.7, 128.4 and 128.6(ArC), 138.4(4°C), 169.9(2 × CO), 176.3(CO); m/e(APCI⁺) 347(MH⁺, 100%), HRMS(CI⁺) 347.1607, MH⁺ requires 347.1606.

(2*S*,4*S*)-*N*-Benzyl-2-methoxycarbonyl-4-[*N*-acetylamino-(ethoxycarbonyl)methyl]-5-oxopyrrolidine 15


Lactam 14 (50 mg, 0.14 mmol) was hydrogenated to yield the crude alcohol product (40 mg): v_{max} (film)/cm⁻¹ 3286(br m, OH, NH), 1738(s, ester CO), 1672(s, lactam CO); m/e (APCI+) 349 (MH+, 100%). This was immediately oxidized according to the Sharpless protocol⁶⁹ to give a white solid (12 mg) LRMS (APCI⁺) m/e 363 (MH⁺, 100%), which was in turn immediately treated with diazomethane in ether. The solvent was removed in vacuo to give a pale yellow oil which was purified by flash column chromatography on silica (ethyl acetate). The product was obtained as a mixture of C-1' diastereomers in a ratio of 1 : 2 (12 mg, 23% over 3 steps): $R_{\rm f}$ 0.31, 0.24 (EtOAc); $v_{\rm max}$ (film)/cm⁻¹ 3320(br m), 1742(s), 1695(s); $\delta_{\rm H}$ (500 MHz, CDCl₃) (major diastereomer) 1.21(3H, t, J 7.0 Hz, OCH₂CH₃), 2.06(3H, s, CH₃C(O)), 2.27-2.33(1H, m, C(3)H), 2.46-2.51(1H, m, C(3)H), 2.98-3.03(1H, m, C(4)H), 3.68(3H, s, OCH₃), 3.98-A 01/011 m MCHDb and COMD A 00 A 00/011 m OCH

Virtually unreadable Totally undiscoverable

Supporting information can require massive effort

Some disciplines are better than others...

Authors are required to provide crystallographic data in the crystallographic information file (CIF) format *at the time of manuscript submission*. Details on the preparation, validation, and submission of this material are available from the Journal's Web site

... but not CompChem

Supplementary Material (ESI) for Chemical Communications This iournal is © The Roval Society of Chemistry 2006

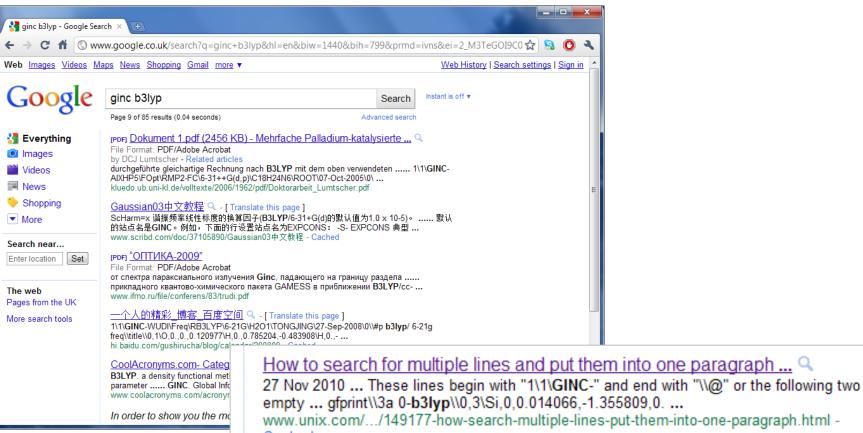
Supplementary Material

Unexpected dual orbital effects in radical addition reactions involving acyl, silyl and related radicals

Carl H Schiesser,*^{*a,b*} Hiroshi Matsubara,*^{*c*} Ina Ritsner^{*a*} and Uta Wille*^{*a,b*}

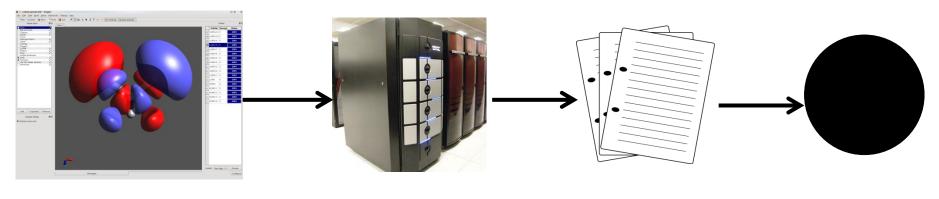
MP2/6-311G**

 $\label{eq:linear} $$ 11 CHEMISTRY CLUSTER KIRKLAND-KNET5 FTS UMP2-FC (-311G(d,p) C3H6N101(2) HIROSHI (-2005)$


PDF destroys data

1

Virtually no data published at all


Cached

The Problem

- No standard way to archive or search the data from CompChem calculations; valuable data festers on disk.
- There isn't even a standard data format (despite the data being rigorously defined) so each computational chemistry code needs specialised tools to understand its output.

Generate data from scratch

Expensive computation

Cumbersome data format

Black hole

- An Open Source, Open Data international collaboration, based entirely in the internet started following a CECAM meeting in Zaragoza: http://neptuno.unizar.es/events/qcdatabases2010/
- Three key ideas:
 - scientific data (and ideally codes too) should be "open"
 - a standard data model/format is a Very Good Thing
 - universally accessible and open databases of the results of calculations are scientifically highly valuable.
- Aim:
 - create a useful infrastructure and consolidate the model around the tools

Countless CPU-hours are spent calculating data most of which is "archived" (discarded?) ... never to be found again

Data is the bread-and-butter of computational chemistry, yet most of it is never seen by the community

- Lots of people have tried to solve the problem of QC interoperability, but no one can agree on a solution.
- Quixote is... an internet-based, international community of scientists, passionate about open-source and open-data, looking to solve the problem in a bottom-up, pragmatic way.

Build it, and they will come.

....

• Standard Data Model:

- different codes can interoperate to create complex workflows.
- tools (e.g. GUI's) can operate on the input and output of any code.
- Open results databases:
 - · codes can be easily validated and benchmarked
 - are essential for the development of new methods
 - avoid costly duplication of results
 - provide a valuable resource for data mining
 - a straightforward way of archiving / publishing

- Mailing lists + Wiki
- Skype meetings, Collaborative authoring: EtherPad
- No funding...
 Just enthusiasm
- Engaging with existing Open Source projects
- Daresbury workshop late March 2011

Roger Martin QuantumBio, Inc, PA Tamás Beke-Somfai Chalmers University, Göteborg Sergio Maffioletti Zurich Jens Thomas Daresbury Peter Murray-Rust Cambridge Pablo Echenique Zaragoza Noel O'Boyle University College Cork Weerapong Phadungsukanan Cambridge Kitware, Inc, NY Marcus Hanwell Jorge Estrada Zaragoza Egon Willighagen Karolinska Institutet Sam Adams Cambridge

eXtensible Markup Language (XML) vocabulary for Chemistry

One of the earliest XML dialects... over the past fifteen years has become the *de facto* XML standard for chemistry – accepted by publishers and the open source and commercial software communities. Supported by well over 1 million lines of Open Source code.

Example CML supporting tools:

- JUMBO / JUMBOConverters
- ChemDraw / ChemBioOffice
- Open Babel
- CDK
- Microsoft Word

```
<molecule xmIns="http://www.xmI-cmI.org/schema">
<atomArray>
<atom id="a1" elementType="C" formalCharge="0" />
<atom id="a2" elementType="O" formalCharge="0" />
<atom id="a3" elementType="O" formalCharge="0" />
</atomArray>
<bond Array>
<bond id="b1" atomRefs2="a1 a2" order="2" />
<bond id="b2" atomRefs2="a1 a3" order="2" />
</bondArray>
</molecule>
```

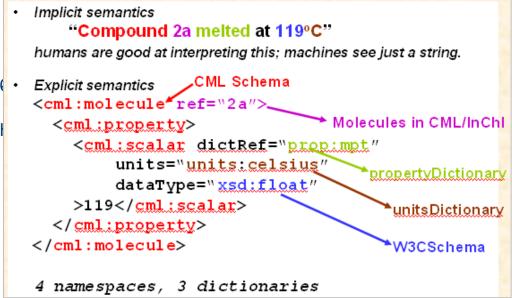

Dictionaries and Conventions

- Conventions:
 - molecular
 - cmlcomp
 - crystallographic

- Dictionaries:
 - units
 - properties
 - data types

Documentation: http://www.xml-cml.org/

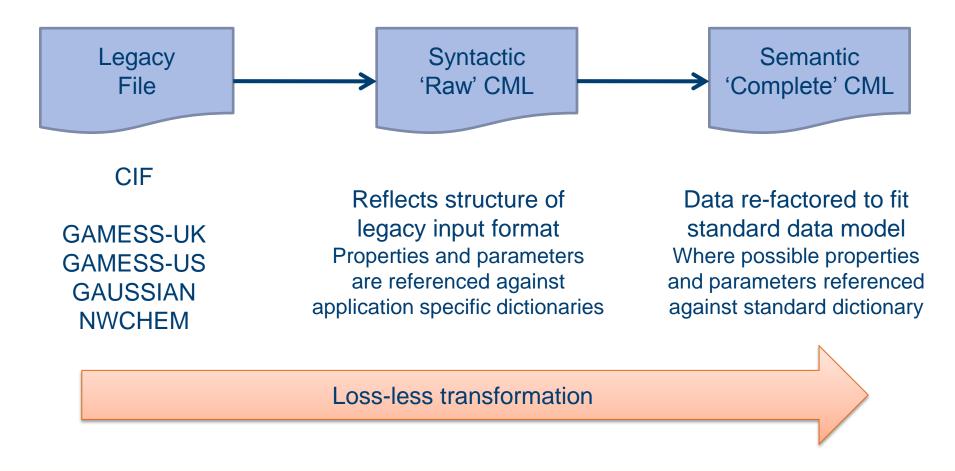
Validator Service: http://validator.xml-cml.org/ Impose data models and semantics on sections of CML documents


Dictionaries

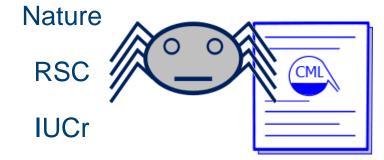
<entry id="counterpoiseEnergy" cmlx:name="counterpoiseEnergy" cmlx:type="xsd:float"
 cmlx:definition="energy calculated by the Counterpoise method; differentiate from Counterpoise
 keyword which takes an integer"</pre>

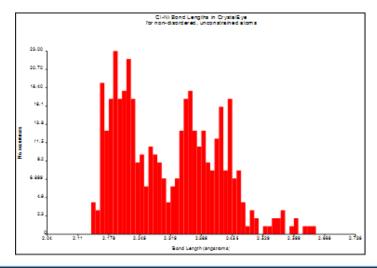
```
cmlx:description="Counterpoise method resultant energy" cmlx:superclass="property">
  <h:p class="manual">
```

See <h:a href="http://www.gaussian.com/g_tech/g_ur/k_counterpoise.htm">Gaussian09 online manual</h:a>


```
</h:p>
<h:p class="notes"><h:pre>
Example:
Counterpoise: corrected energy =
Counterpoise: BSSE energy =
</h:pre>
Units are not specified, we guess ti
</h:p>
</entry>
```


JUMBO-Converters





CrystalEye

ACS

UNIVERSITY OF CAMBRIDGE

STATE SAIN

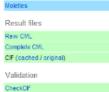
<< Table of Contents

Publisher: Acta Crystallographica Journal: Section E Year/Issue: 2010/10-00

Article (via DOI): Compound Classorganic Date Recorded:2010-07-13

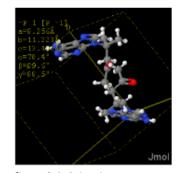
Contact Author: Ningshu Wu e-mail: wumingshu@126.com

Data collection parameters


Chemical formula sum	C ₁₁ H ₁₆ N ₅ /
Chemical formula moiety	C ₁₁ H ₁₅ N ₅
Crystal system	triclinic
Space group H-M	P -1
Space group Hall	-P1
Data collection temperature	298(2)
	298(2)

Refinement results

R Factor (Obs)	0.0562
R Factor (All)	0.0983
Weighted R Factor (Obs)	0.1342
Weighted R Factor (AI)	0.1616

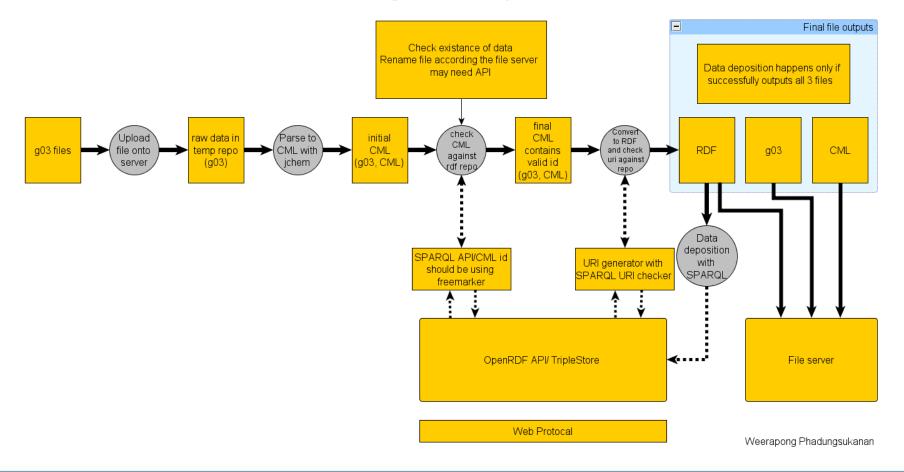

Available Resources

Crystal Components

Images Elipsoid

Show no. of unit cells along axis:

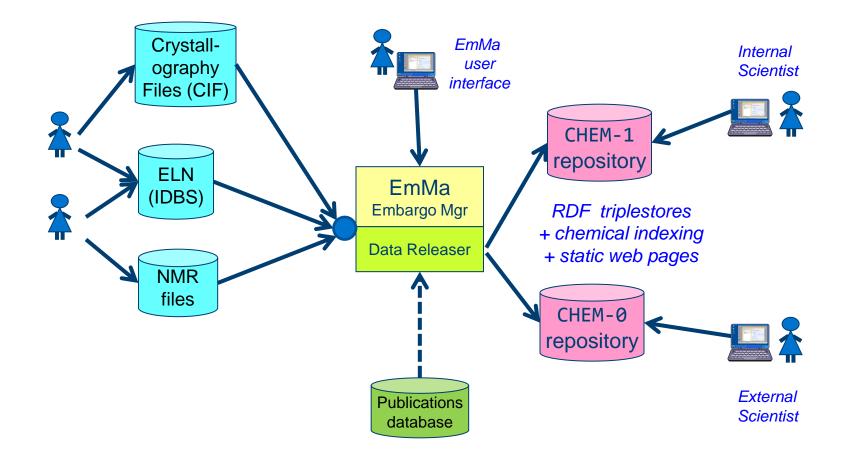
Enter Jmol script:



InChit InChi+1/2011H15N5O/c2*1-7(17)4-11(2,3)16-6-15-8-9(12)13-5-14-10(8)16/h2*5-6H,4H2,1-3H3, (H2,12,13,14)

Lensfield

Architecture Diagram of CompChem Server



UNIVERSITY OF CAMBRIDGE

http://como.cheng.cam.ac.uk/cmcc/

CLARION

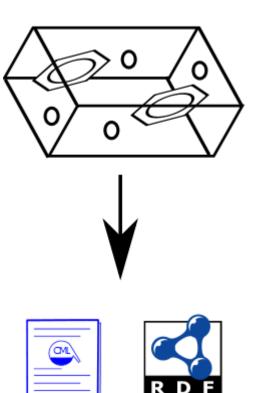
Tools

Lensfield2

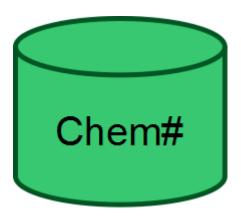
'make' for data

handles both file *and* code versioning

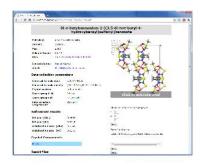
Java oriented


Chempound (chem#)

Semantic Chemical Data Repository



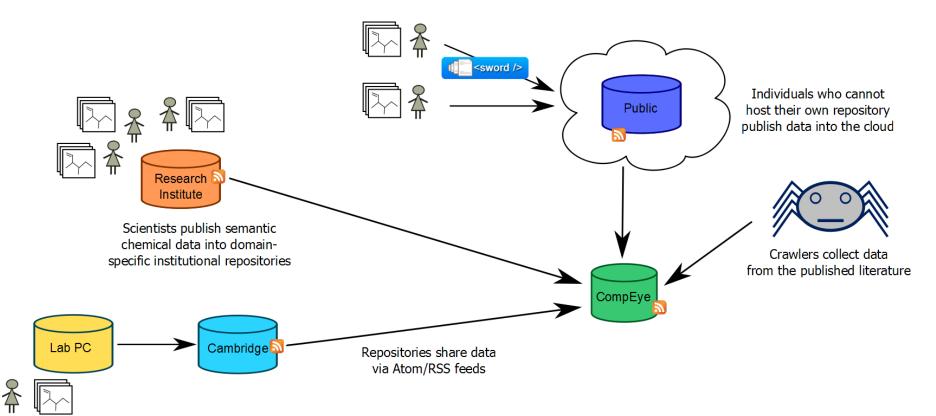
Chempound


linked open data: the chemical semantic web

Chempound stores

legacy and semantic files

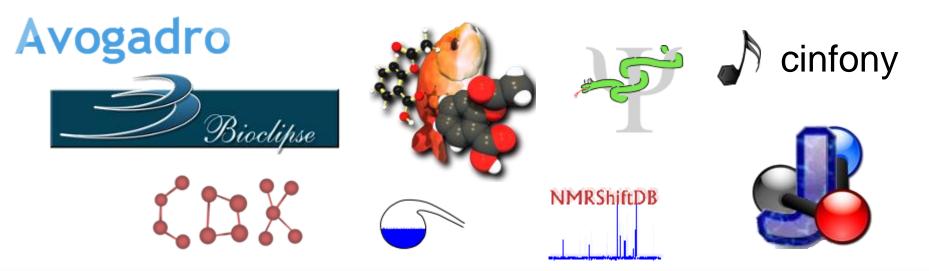
indexed using RDF



Vision

Fit existing workflows

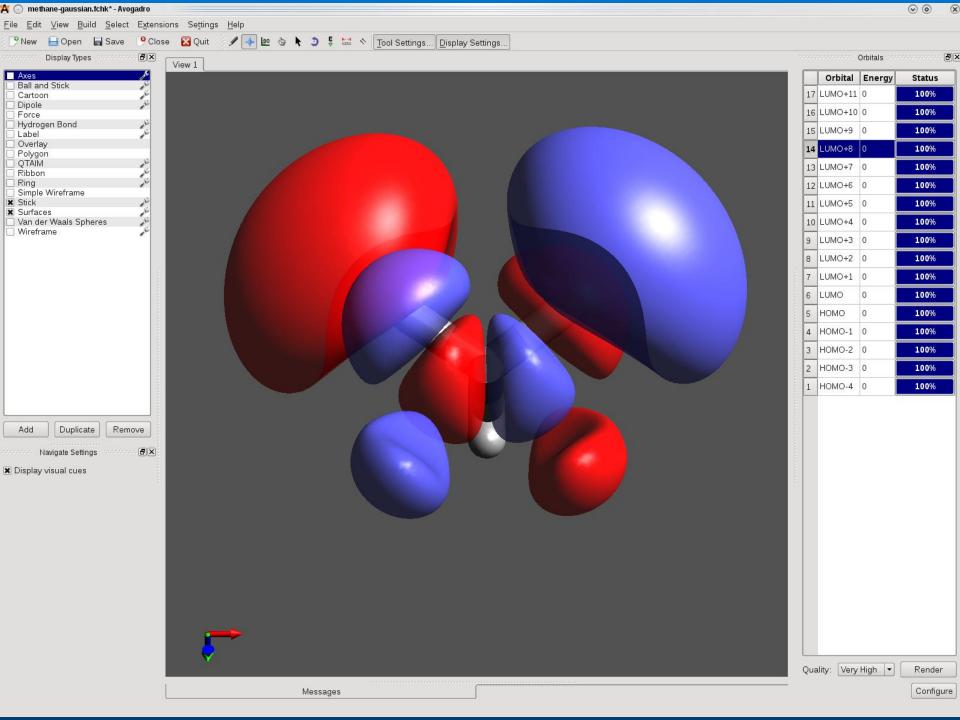
Source	Stream	Bit Date	Se Comment	arch Refresh	
prary A	▼ 50s/60s Pop (16 streams)	Dit Rate	Commeric		
odcasts	AccuRadio-Hey Hey We're Th	48 kbps	Great oldies from th	e Beatles, Stones, Hollies	
deos	The AccuRadio-Hey Hey We're Th			Reatles Stones Hollies	
rty Shuffle	AccuRadio-Swinging Pop Sta			0.0.1:32674/?hl=en_US&s=9o3LqjHZtqqzADwJVYuLsB8KukA	
adio	AccuRadio-Swinging Pop Sta	24 kbps	Classic and moder	.0.1:52674/mi=en_05&s=905LqHZtqq2ADwJvTuLsB8RukA	
isic Store	🛜 Classic Soul Network	128 kbps	Great soul music fr		
	🛜 Edgewater Radio	32 kbps	Great Memories fro		
rchased	🛜 Industrialinfo	24 kbps	Oldies from Crazy		
Top Rated	🛜 Memory Radio 1	48 kbps	Deutsche Hits aus		
t for Kids Only	© Memory Radio 2 48 kbps Deutsche Hits aus				
cently Played	🛜 Oldies Mix Radio	56 kbps	The Greatest Hits	Desktop 🔘 BETA	
play AV	Oldies RadioNET	56 kbps	Your all-time oldies		
p 25 Most Played	🛜 radioioHistory	128 kbps	Music that defined		
son Krauss	🛜 radioioHistory	64 kbps	Music that defined	Web Images Video News Maps Desktop more »	
ernative	🛜 radioioHistory	32 kbps	Music that defined	Deskbp Preferences Advanced Search	
by Bash/South Park	🛜 Technicolor Web of Sound	56 kbps	60s Psychedelic W	Search Desktop Search the Web	
Favs 🟹	🛜 Beatles-A-Rama	64 kbps	The Beatles' Story		
Now Playing	▶ 70s/80s Pop				
	Alt/Modern Rock				
	Ambient			One-time index update in progress.	
	Americana				
Nothing	Blues			13.5% complete with about 5.1 idle hours left. 1,399 items indexed so far.	
_	Classic Rock				
Playing	Classical				
	Country			Index Status - Privacy - About	
	▶ Eclectic				
	Electronica			©2007 Google	

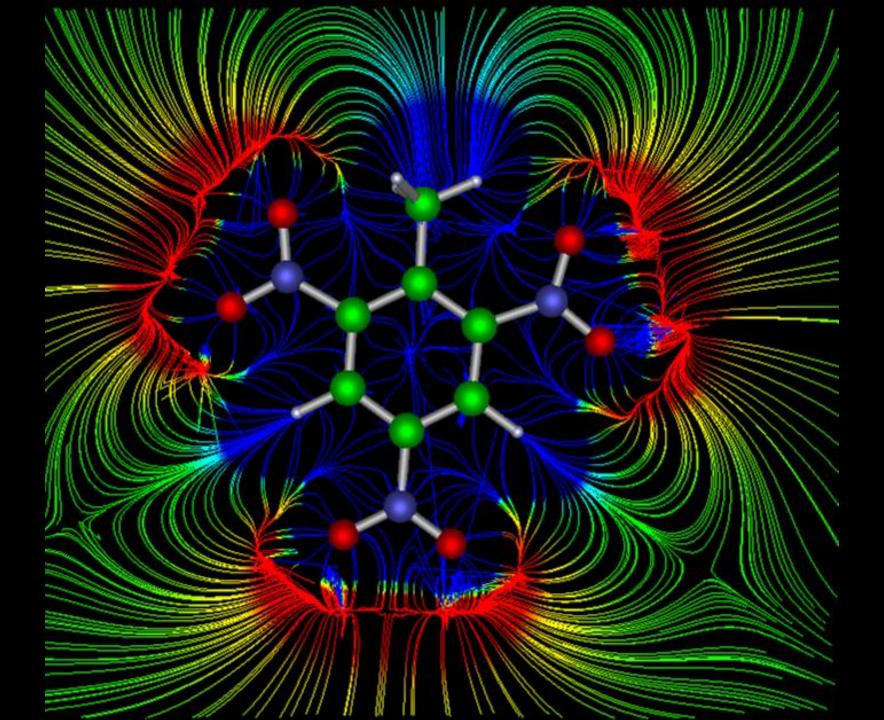


• An internet group dedicated to creating open interoperable resources for chemistry. Some of the software is the *de facto* approach in specific sub-domains.

Open Data, Open Standards, Open Source

Reproducible science


- Data drives science, but masses of scientific data is currently lost
- Publication needs to be easy fit into scientist's existing workflows
- Lightweight, modular technologies


Faster Science, New Discoveries, Avoid Duplication, Improve Repeatability, Advertise Work, Better (communal) Tools, Funder Mandates, Improved Data Management

> "rough consensus and running code" - IETF http://www.ietf.org/tao.html

Acknowledgements

Cambridge:

Peter Murray-Rust Joe Townsend Jim Downing Nick Day Weerapong Phadungsukanan

Visualisations: Jens Thomas

Quixote Project

JISC

Microsoft[®]

Thank you for listening

sea36@cam.ac.uk

http://groups.google.com/group/quixote-qcdb

http://quixote.wikispot.org/

